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In the 1990s, a series of technologic advances made it possible to translate DWI measurements to 
extracranial sites, including the abdomen and pelvis. The developments of echo-planar imaging 

(EPI), high-gradient amplitudes, multichannel coils, and parallel imaging have been instrumental 
in extending the applications of DWI. In particular, the introduction of parallel imaging, which 
enabled reduction in the TE, the echotrain length, and the k-space filling time, led to substantially 
less motion artifact at image acquisition, thus enabling high-quality DW images of the body to be 
obtained. 
 
DWI yields qualitative and quantitative information that provides unique insight into tumor 
characteristics, and there is growing evidence for its use in the assessment of the patient with 
cancer. 
 

1. Tumor detection: In general, tumors have lower ADC values, whereas 
normal/benign/reactive tissues have correspondingly higher values. 

•  DWI is being applied for the detection of liver metastases which appear as high-
signal-intensity foci at DWI.1 
 

2. Tumor characterization: Apparent diffusion coefficient values for distinguishing 
malignancy from normal/reactive tissues and benign disease are dependent on histologic 
characteristics such as tumor type, differentiation, and necrosis 

• Benign liver lesions, such as cysts and hemangiomas, have higher mean ADC 
values (e.g., 2.45 x 10–3 mm2/s) than malignant lesions, such as metastases and 
hepatocellular carcinoma (e.g., 1.08 x 10–3 mm2/s)2, 3 

• In prostate cancer, differentiating tumor from other causes of a low-signal-
intensity lesion in the prostate gland is difficult on conventional T2-weighted 
MRI. DWI has shown potential for tumor identification4-8.  

• In colorectal cancer,9 DWI showed high sensitivity and specificity for detecting 
tumors10, and several studies found that DWI detected was tumors in of the 
pancreas11 and gall bladder 12 with high sensitivity and specificity. 
 

3. Several studies have indicated that DWI may be useful for tumor staging, including 
lymph node, bone and distant metastases13-17.  
 

4. It has been suggested that there is a prognostic significance of pretreatment ADC values 
stems from the relationship between necrosis and poorer patient outcomes. 
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• Studies in rectal carcinoma 18, 19 have shown that tumors with low baseline 
pretreatment ADC values respond better to treatment compared to tumors with 

high pretreatment ADC values. 
 

5. Treatment response:  DWI may be an effective early biomarker for treatment outcome for 
both antivascular drugs and therapies that induce tumor cell apoptosis. While DWI 
protocols and analysis methods need be tailored to individual tumor types, anatomic sites, 
and therapies, successful treatment is generally reflected by an increase in ADC values; 
however, transient early decreases in ADC values can be seen after treatment. 

• Animal studies showed that an increase in ADC after treatment correlated with 
response in subcutaneous gliosarcoma20, colon cancer, Prostate cancer 
xenografts21, colon carcinoma22, Breast tumor xenografts 23 and mammary 
tumors24.  

• Similar results have been found in humans with hepatocellular carcinoma 25-28, 
soft tissue sarcomas 29, uterine leiomyomata 5, breast cancer 30, cervical cancer31, 
prostate cancer6, 7, rectal carcinoma 32 
 

6. Diffusion-weighted MRI has the potential to assist in new drug development and in 
clinical practice. 
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